Transformer oil analysis – basic introduction

By N Robinson, WearCheck

Regular oil analysis is useful in monitoring the condition of engines, drivetrains, hydraulics, turbines and many other types of oil lubricated equipment. The same can be said for transformer oils, which are used to insulate transformers and other electrical distribution equipment.

The analysis of transformer oils provides information about the oil, and enables the detection of other potential problems, including contact arcing, ageing insulating paper and other latent faults, and is an indispensable part of a cost-efficient electrical maintenance programme.

Ensuring transformer reliability

Transformer maintenance has evolved over the past 20 years from a necessary item of expenditure to a strategic tool in the management of electrical transmission and distribution networks. Extreme reliability is demanded of electric power distribution, and even though the failure risk of a transformer and other oil-filled electrical equipment is small, when failures do occur, they inevitably lead to high repair costs, long downtime and very real safety risks. Moreover, transformers are too expensive to replace regularly and must be properly maintained to maximise their life expectancy.

By accurately monitoring the condition of the oil, many types of faults can be discovered before they become serious failures and outages can potentially be avoided. Furthermore, an efficient approach to maintenance can be adopted and the optimum intervals determined for replacement. Some of the checks are relatively simple: the operation of the gas relays, the operation of the on-load tap-changer, checks on oil leaks, etc. However, breakdown of one of the most crucial elements, the oil/paper insulating system, can only reliably be detected by routine oil analysis. By measuring certain physical and chemical properties of oil, in addition to the concentrations of certain dissolved gases, a number of problem conditions associated with either the oil or the transformer can be determined.

The following are some common tests performed on electrical transformer oils:

Moisture content

One of the most important functions of transformer oil is to provide electrical insulation. Any increase in moisture content can reduce the insulating properties of the oil, which may result in dielectric breakdown. Water and oil, because of their differing chemical properties are not mutually soluble; however, up to a certain limit a small amount of water will dissolve in the oil. The limit is a function of the temperature of the system and the solubility increases exponentially with increasing temperature. This is of particular importance with fluctuating temperatures because as the transformer cools down any dissolved water will become free, resulting in poor insulating power and oil degradation. A point to note is that, as the oil ages in service, a certain amount of oxidation occurs, which changes the chemical make-up of the oil, which in turn allows more water to dissolve. In addition, many transformers contain cellulose-based paper used as insulation in the windings. Again, excessive moisture content can result in the breakdown of this paper insulation with a resultant loss in performance. The moisture...
content of the oil is determined using coulometric Karl Fischer. This is an extremely sensitive test and can detect water at levels down to a few parts per million.

Acid number
Like lubricating oils, transformer oils are oxidised under the influence of excessive temperature and oxygen, particularly in the presence of small metal particles that can act as catalysts. Oxidation products are usually acidic in nature and result in an increase in acid number. Further reaction of these acids with the bulk oil can result in sludge and varnish deposits. In the worst-case scenario, the oil canals become blocked and the transformer is not cooled adequately, which exacerbates oil breakdown. Furthermore, an increase in the acidity has a damaging effect on the cellulose paper. Oil degradation products, such as acids and hydroperoxides, generally have the ability to conduct an electrical charge, which in turn reduces the insulating properties of the oil. An increase in Acid Number often goes hand-in-hand with a decrease in dielectric strength and increased moisture content shown in Figure 2. Again, like their industrial cousins, the acid content of transformer oils is determined by Potentiometric titration with potassium hydroxide.

Dielectric strength
The dielectric strength of a transformer oil is a measure of the oil’s ability to withstand electrical stress without failure. Because transformer oils are designed to provide electrical insulation under high electrical potentials, any significant reduction in the dielectric strength will indicate that the oil is no longer able to perform this vital function. Some of the things that can cause a reduction in dielectric strength include contaminants such as water, sediment, conducting particles, oil degradation by-products and cellulose paper breakdown. The test method for determining dielectric strength is relatively simple and involves applying an ac voltage at a controlled increasing rate to two electrodes immersed in the transformer oil. The gap is a specified distance and when the current arcs across this gap the voltage recorded is used to determine the dielectric strength.

Power Factor (PF) or dissipation factor
The Power Factor (PF) of a transformer oil is the ratio of true power to apparent power and is a measure of the current leakage through the oil, which in turn is a measure of the contamination or deterioration of the oil. In a transformer, a high PF is an indication of significant power loss in the transformer oil, usually as a result of contaminants such as water, oxidised oil and cellulose paper degradation. It may also be any substance in the oil that either resists or conducts electricity differently to that of the oil itself and may include diesel fuel, lubricating oil and kerosene. The test is not specific in what it detects and is usually carried out at elevated temperatures as contaminants that affect the test may remain undetected at 90°C and only reveal themselves at >90°C.

InterFacial Tension (IFT)
The interfacial tension of transformer oil is related to its deterioration. Transformer oil is generally a hydrocarbon and thus hydrophobic; however, when the sample undergoes oxidative degradation, oxygenated species such as carboxylic acids are formed, which are hydrophilic in nature. IFT is the surface tension of a sample of the oil carefully floated on top of a layer of water. The more hydrophilic the oil becomes, the lower the value of the surface tension between the two liquids. Studies have shown that there is a definite relationship between acid number and IFT. An increase in acid number generally shows a decrease in IFT; however, when there is a loss in IFT without the corresponding increase in acid number, it is generally because of contamination with another hydrophilic substance not derived from oxidation of the oil.
Furanics or (degree of polymerisation)

The solid insulation (cellulose-based products) in transformers degrades with time at rates that depend on the temperature, moisture content, oxygen and acids in the insulation system. Heat and moisture are the main enemies of the solid paper insulation with oxidation as the primary culprit. When degradation occurs, the cellulose molecular chains (polymers) get shorter and chemical products such as furanic derivatives are produced and dissolve in the transformer oil. Of the furanic compounds, the 2-furaldehyde is the most abundant. Its concentration in oil has been related to the Degree of Polymerisation (DP) and consequently to the physical strength of the solid insulation (see Figure 3).

![Figure 3](image)

Figure 3: The concentration of 2-furaldehyde in oil is related to the DP.

The cellulose materials are the weakest link in the insulation system. Since the life of the transformer is actually the life of the cellulose insulation and degradation of the cellulose is irreversible, the decay products should be removed before they can do any further damage to the cellulose. With proper maintenance, the cellulose can have an indefinite life. To test for furanics, a sample of the oil is obtained and certain chemical techniques are used to extract the furans from the oil. The extract is analysed using a process called High Performance Liquid Chromatography (HPLC). The results are usually reported in terms of parts per billion (ppb).

Dissolved Gas Analysis

The analysis of gases from petroleum products has been performed for decades using gas chromatography. However, this technique was not applied specifically to transformer mineral oils until the late 1960s/early 1970s and is commonly called Dissolved Gas-in-oil Analysis (DGA). DGA has become a standard in the electrical maintenance industry throughout the world and is considered to be the most important oil test for transformer oils in electrical apparatus. More importantly, an oil sample can be taken at any time from most equipment without having to take it out of service, allowing a ‘window’ inside the electrical apparatus that helps with diagnosing and trouble-shooting potential problems.

As the insulating materials of a transformer break down from excessive thermal or electrical stress, gaseous by-products form. The by-products are characteristic of the type of incipient-fault condition, the materials involved and the severity of the condition. Indeed, it is the ability to detect such a variety of problems that makes this test a powerful tool for detecting incipient-fault conditions and for root-cause investigations after failures have occurred. Dissolved gases are detectable in low concentrations (ppm level), which usually permit early intervention before failure of the electrical apparatus occurs, and allow for planned maintenance. The DGA technique involves extracting or stripping the gases from the oil and injecting them into a Gas Chromatograph (GC).

Typical gases generated from mineral oil/cellulose- or paper and pressboard-insulated transformers include:

- Hydrogen, H₂
- Methane, CH₄
- Ethane, C₂H₆
- Ethylene, C₂H₄
- Acetylene, C₂H₂
- Carbon Monoxide, CO
- Carbon Dioxide, CO₂

Additionally, oxygen and nitrogen are always present - their concentrations vary with the type of preservation system used on the transformer. Gases such as propane, butane, butene and others can be formed, but their use for diagnostic purposes is not widespread. The concentration of the different gases provides information about the type of incipient-fault condition present as well as the severity. Four broad categories of fault conditions are described and characterised in Table 1.

<table>
<thead>
<tr>
<th>Key gases</th>
<th>General fault condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methane, Ethane, Ethylene and small amounts of Acetylene</td>
<td>Thermal condition involving the oil</td>
</tr>
<tr>
<td>Hydrogen, Methane and small amounts of Acetylene and Ethane</td>
<td>Partial discharge</td>
</tr>
<tr>
<td>Hydrogen, Acetylene and Ethylene</td>
<td>Sustained arcing</td>
</tr>
<tr>
<td>Carbon Monoxide and Carbon Dioxide</td>
<td>Thermal condition involving the paper</td>
</tr>
</tbody>
</table>

Table 1: Categories of key gases and general fault conditions.

The severity of an incipient-fault condition is ascertained by the total amount of combustible gases present (CO, H₂, C₂H₂, C₂H₆, C₂H₄, CH₄) and their rate of generation. Transformers generally retain a large portion of the gases generated and therefore produce a cumulative history of the insulating materials’ degradation. This is an important tool for detecting and trending incipient problems. However, it also means that care is needed in interpreting values for a first-time analysis on service-aged transformers (more than several years old), which could contain residual gases from previous events.

Some gas generation is expected from normal ageing of the transformer insulation and it is important to differentiate between normal and excessive gasing rates. Normal ageing or gas generation varies with transformer design, loading and type of insulating materials. Routinely, general gasing rates for all transformers are used to define abnormal behaviour. Specific information for a family of transformers can be used when sufficient dissolved gas-in-oil data are available.

Acetylene is considered to be the most significant gas generated. An enormous amount of energy is required to produce acetylene, which is formed from the breakdown of oil at temperatures in excess of 700°C. Excessively high overheating of the oil will produce the gas in low concentrations; however, higher concentrations are typically symptomatic of sustained arcing, a more serious operational issue that can cause transformer failure if left unchecked.
PCB analysis

PCBs (PolyChlorinated Biphenyls) are a group of synthetic oil-like chemicals of the organo-chlorine family. Until their toxic nature was recognised and their use banned in the early 1980s, they were widely used as insulation in electrical equipment, particularly transformers. Three types of PCB are normally used in electrical transformers: Aroclor 1242, 1254 and 1260, commonly known by various brand names, including Askarel, Chlorectol, Elemex, Inerteen, and Pyranol.

One of the most important problems with PCBs is that they concentrate in the fatty parts of micro-organisms. This concentration factor between the organism and the water can be as much as a million times. Concentrations are further amplified as the micro-organisms become food for animals further up the food chain. PCBs are stable and their degradation process is slow, making for greater amplification in organisms. Although not overly toxic in themselves, PCBs are poisons that have been shown to cause damage to the reproductive, neurological and immune systems of wildlife and humans.

Far more serious are the risks of a fire or an explosion. At temperatures around 500ºC, extremely toxic compounds – PolyChlorinated Dibenzo-Furanes (PCDF) and PolyChlorinated Dibenzo-Dioxins (PCDD) – are formed. Small amounts of these compounds have been found at accidents where transformers and capacitors have been exposed to fire or have exploded. Even if the amounts have been extremely small and have caused no personal injuries, it has been necessary to perform extensive and costly decontamination work.

PCDDS and PCDFs cause damage and death in doses ranging from 1 ppb to 5 000 ppb. Damage to the liver, kidneys and digestive tract, miscarriages and sterility can occur. They are among the most potent cancer promoters known.

Methods of PCB analysis

Current methods of analysis are divided into two major groups: PCB Specific and PCB Non-specific. Non-specific methods test for PCBs indirectly by detecting one of the components of the PCB compound, usually chlorine. In general, non-specific methods are quicker and less expensive than the specific methods; however, these tests are susceptible to false positive results, since the test does not detect PCB itself. Specific methods use some type of chromatography to separate PCB molecules from each other and interfering compounds. It is not a case of simply finding an easily quantifiable compound, but of quantifying a complex mixture of compounds. Of the three major chromatography types, gas chromatography (GC), thin layer chromatography (TLC) and liquid chromatography, GC is the preferred and most extensively-used method.

PCB associated terminology defined:

Non-PCB: Any fluid, including that in electrical equipment and any item that has a measurable PCB concentration of less than 50 ppm of PCB, is considered a non-PCB item.

PCB contaminated: any fluid, including that in electrical equipment, and any item that has a measurable PCB concentration of 50 ppm or greater but less than 500 ppm is regarded as being PCB contaminated.

PCB item: any fluid, including that in electrical equipment and in any item that has a measurable PCB concentration equal to or greater than 500 ppm, is regarded as a PCB item.

Note: transformer oil that has not been tested must be classified as PCB contaminated until shown to be otherwise.

Once the PCB status is determined, a sticker is issued and fixed to the item in question. This allows for quick reference and ensures that potential cross-contamination is avoided during future sampling, maintenance and decommissioning if necessary.

Blending PCB-contaminated oil with virgin or other oil to meet the legal requirements is an illegal practice that has happened from time to time. This practice simply has the effect of contaminating virgin oil supplies. It ensures that the PCBs persist in the environment, leading to further contamination.

Proper transformer sampling

Just like machinery oil analysis, the ability of transformer oil analysis to provide an early warning sign of a problem condition depends on the quality of the oil sample that is sent to the lab. A sampling point on any equipment should be identified and clearly labelled for the technician. As with sampling locations in other types of equipment, the same location should be used each time a sample is collected to ensure representative conditions are tested. This point should be located in a place where a live oil sample can be collected rather than in an area where the oil is static.

Like machinery oil analysis, electrical transformer oil analysis can play a vital role in preventing unscheduled outages in electrical transmission and distribution equipment by determining the condition of the equipment itself, and other vital components, including the condition of the oil and the cellulose paper insulation. For all critical oil-filled electrical equipment, including transformers, circuit breakers and voltage regulators, regular, routine oil analysis should be the cornerstone of any PM programme.

Bibliography

Reygerta E, Laborelect, courtesy Noria Corporation.

NTT WorldWide Technical Bulletins.

Lewand LR, Doble Engineering Company, courtesy Noria Corporation.

Gray IAR, Transformer Chemistry Services.

Gray IAR, Guide for PCB management of insulating oils in South Africa.